Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atherosclerosis ; 371: 1-13, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36940535

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis is a systemic and chronic inflammatory disease propagated by monocytes and macrophages. Yet, our knowledge on how transcriptome of these cells evolves in time and space is limited. We aimed at characterizing gene expression changes in site-specific macrophages and in circulating monocytes during the course of atherosclerosis. METHODS: We utilized apolipoprotein E-deficient mice undergoing one- and six-month high cholesterol diet to model early and advanced atherosclerosis. Aortic macrophages, peritoneal macrophages, and circulating monocytes from each mouse were subjected to bulk RNA-sequencing (RNA-seq). We constructed a comparative directory that profiles lesion- and disease stage-specific transcriptomic regulation of the three cell types in atherosclerosis. Lastly, the regulation of one gene, Gpnmb, whose expression positively correlated with atheroma growth, was validated using single-cell RNA-seq (scRNA-seq) of atheroma plaque from murine and human. RESULTS: The convergence of gene regulation between the three investigated cell types was surprisingly low. Overall 3245 differentially expressed genes were involved in the biological modulation of aortic macrophages, among which less than 1% were commonly regulated by the remote monocytes/macrophages. Aortic macrophages regulated gene expression most actively during atheroma initiation. Through complementary interrogation of murine and human scRNA-seq datasets, we showcased the practicality of our directory, using the selected gene, Gpnmb, whose expression in aortic macrophages, and a subset of foamy macrophages in particular, strongly correlated with disease advancement during atherosclerosis initiation and progression. CONCLUSIONS: Our study provides a unique toolset to explore gene regulation of macrophage-related biological processes in and outside the atheromatous plaque at early and advanced disease stages.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Ratones , Apolipoproteínas E , Aterosclerosis/genética , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo , Transcriptoma
2.
Front Cardiovasc Med ; 9: 865367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548412

RESUMEN

Atherosclerosis is the main pathomechanism leading to cardiovascular diseases such as myocardial infarction or stroke. There is consensus that atherosclerosis is not only a metabolic disorder but rather a chronic inflammatory disease influenced by various immune cells of the innate and adaptive immune system. Macrophages constitute the largest population of inflammatory cells in atherosclerotic lesions. They play a critical role in all stages of atherogenesis. The heterogenous macrophage population can be subdivided on the basis of their origins into resident, yolk sac and fetal liver monocyte-derived macrophages and postnatal monocyte-derived, recruited macrophages. Recent transcriptomic analyses revealed that the major macrophage populations in atherosclerosis include resident, inflammatory and foamy macrophages, representing a more functional classification. The aim of this review is to provide an overview of the trafficking, fate, and functional aspects of the different macrophage populations in the "life cycle" of an atheromatous plaque. Understanding the chronic inflammatory state in atherosclerotic lesions is an important basis for developing new therapeutic approaches to abolish lesion growth and promote plaque regression in addition to general cholesterol lowering.

3.
Mol Metab ; 53: 101250, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33991749

RESUMEN

OBJECTIVE: Interferon regulatory factor (IRF) 5 is a transcription factor known for promoting M1 type macrophage polarization in vitro. Given the central role of inflammatory macrophages in promoting atherosclerotic plaque progression, we hypothesize that myeloid cell-specific deletion of IRF5 is protective against atherosclerosis. METHODS: Female Apoe-/-LysmCre/+Irf5fl/fl and Apoe-/-Irf5fl/fl mice were fed a high-cholesterol diet for three months. Atherosclerotic plaque size and compositions as well as inflammatory gene expression were analyzed. Mechanistically, IRF5-dependent bone marrow-derived macrophage cytokine profiles were tested under M1 and M2 polarizing conditions. Mixed bone marrow chimeras were generated to determine intrinsic IRF5-dependent effects on macrophage accumulation in atherosclerotic plaques. RESULTS: Myeloid cell-specific Irf5 deficiency blunted LPS/IFNγ-induced inflammatory gene expression in vitro and in the atherosclerotic aorta in vivo. While atherosclerotic lesion size was not reduced in myeloid cell-specific Irf5-deficient Apoe-/- mice, plaque composition was favorably altered, resembling a stable plaque phenotype with reduced macrophage and lipid contents, reduced inflammatory gene expression and increased collagen deposition alongside elevated Mertk and Tgfß expression. Irf5-deficient macrophages, when directly competing with wild type macrophages in the same mouse, were less prone to accumulate in atherosclerotic lesion, independent of monocyte recruitment. Irf5-deficient monocytes, when exposed to oxidized low density lipoprotein, were less likely to differentiate into macrophage foam cells, and Irf5-deficient macrophages proliferated less in the plaque. CONCLUSION: Our study provides genetic evidence that selectively altering macrophage polarization induces a stable plaque phenotype in mice.


Asunto(s)
Apolipoproteínas E/metabolismo , Factores Reguladores del Interferón/metabolismo , Células Mieloides/metabolismo , Placa Aterosclerótica/metabolismo , Animales , Apolipoproteínas E/deficiencia , Femenino , Factores Reguladores del Interferón/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/patología
4.
Front Cell Neurosci ; 14: 66, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296307

RESUMEN

Microglia are constantly surveying their microenvironment and rapidly react to impairments by changing their morphology, migrating toward stimuli and adopting gene expression profiles characterizing their activated state. The increased expression of the M2-like marker Mannose receptor 1 (Mrc1), which is also referred to as CD206, in microglia has been reported after M2-like activation in vitro and in vivo. Mrc1 is a 175-kDa transmembrane pattern recognition receptor which binds a variety of carbohydrates and is involved in the pinocytosis and the phagocytosis of immune cells, including microglia, and thought to contribute to a neuroprotective microglial phenotype. Here we analyzed the effects of TGFß signaling on Mrc1 expression in microglia in vivo and in vitro. Using C57BL/6 wild type and Cx3cr1 CreERT2 :R26-YFP:Tgfbr2 fl/fl mice-derived microglia, we show that the silencing of TGFß signaling results in the upregulation of Mrc1, whereas recombinant TGFß1 induced the delayed downregulation of Mrc1. Furthermore, chromatin immunoprecipitation experiments provided evidence that Mrc1 is not a direct Smad2/Smad4 target gene in microglia. Altogether our data indicate that the changes in Mrc1 expression after the activation or the silencing of microglial TGFß signaling are likely to be mediated by modifications of the secondary intracellular signaling events influenced by TGFß signaling.

5.
Front Immunol ; 9: 1728, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30093905

RESUMEN

Microglia maturation takes place during the postnatal weeks and is characterized by the establishment of a unique microglia-specific gene expression pattern. Tmem119, Fcrls, Hexb, and Olfml3 have been identified among these microglia-specific genes. Transforming growth factor ß1 (TGFß1) has been reported as a critical factor for microglia maturation and maintenance and active TGFß signaling precedes the inductions of microglial gene expression. In this study, we demonstrate Olfml3 expression in adult microglia and further provide evidence that TGFß1 induces upregulation of Olfml3 expression in postnatal microglia. Using chromatin immunoprecipitation and microglia-specific silencing of TGFß signaling in vitro and in vivo, we in clearly show that Olfml3 is a direct TGFß1/Smad2 target gene. Together, our data underline the importance of TGFß1 as a critical regulator of microglia functions and microglia maturation and further broaden our understanding of TGFß1-mediated effects on the resident immune cells of the central nervous system.


Asunto(s)
Regulación de la Expresión Génica , Microglía/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Sitios de Unión , Ratones , Especificidad de Órganos , Unión Proteica , Transporte de Proteínas
6.
Glia ; 66(8): 1695-1708, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29575117

RESUMEN

Microglia are involved in a widespread set of physiological and pathological processes and further play important roles during neurodevelopmental events. Postnatal maturation of microglia has been associated with the establishment of microglia-specific gene expression patterns. The mechanisms governing microglia maturation are only partially understood but Tgfß1 has been suggested to be one important mediator. In the present study, we demonstrate that early postnatal microglia maturation is associated with alternative microglia activation, increased engulfment of apoptotic cells as well as activated microglial Tgfß signaling. Interestingly, microglial Tgfß signaling preceded the induction of the microglia-specific gene expression indicating the importance of Tgfß1 for postnatal microglia maturation. Moreover, we provide evidence that Tgfß1 is expressed by neurons in postnatal and adult brains defining neuron-microglia communication via Tgfß1 as an important event. Finally, we introduce the recently identified microglia marker Tmem119 as a direct Tgfß1-Smad2 target gene. Taken together, the data presented here further increase the understanding of Tgfß1-mediated effects in microglia and place emphasis on the importance of Tgfß1 for microglia maturation and maintenance.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Animales Recién Nacidos , Macrófagos/metabolismo , Ratones Noqueados , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...